Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers
نویسندگان
چکیده
A significant barrier that impedes the commercialization of single-walled carbon nanotube-related applications is that all known synthetic methods produce a complicated mixture of semiconducting and metallic species. For device applications, pure semiconducting or pure metallic samples are desirable. Thus far, the purification methods that have been identified are capable of separating individual carbon nanotube species on a microgram scale, but purification on a large scale has remained elusive. The use of conjugated polymers to selectively disperse specific nanotube species is a promising approach to resolve the scalability issue, but a comprehensive understanding of the selectivity mechanism has not yet been achieved. Here, several of the trends reported in the literature are outlined to further the rational design of conjugated polymers for nanotube sorting. Numerous variables influence dispersion selectivity, including polymer structure and molecular weight, nanotube type used, sonication temperature, amount of polymer relative to nanotube, and solvent. We have organized these seemingly disparate parameters into two simple categories: conjugated polymer structure, and dispersion preparation conditions. Most importantly, we consider the mechanistic arguments that have been proposed, and provide additional insights based on the observations in the literature.
منابع مشابه
Dispersing as-prepared single-walled carbon nanotube powders with linear conjugated polymers.
Suitably modified linear conjugated poly(arylene ethynylene)s are able to assist effective debundling and dispersion of crude as-prepared single-walled carbon nanotube powders in organic solvents, the dispersion of which is effected via a surface coating mechanism and, to some extent, in a size-selective fashion.
متن کاملDiameter-selective dispersion of single-walled carbon nanotubes using a water-soluble, biocompatible polymer.
One-step diameter-selective dispersion of HiPco single-walled carbon nanotubes has been accomplished through noncovalent complexation of the nanotubes with a water-soluble, biocompatible polymer chitosan at room temperature.
متن کاملSelective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s.
Conjugated polymers, such as polyfluorene and poly(phenylene vinylene), have been used to selectively disperse semiconducting single-walled carbon nanotubes (sc-SWNTs), but these polymers have limited applications in transistors and solar cells. Regioregular poly(3-alkylthiophene)s (rr-P3ATs) are the most widely used materials for organic electronics and have been observed to wrap around SWNTs....
متن کاملDithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes.
Phenylene ethynylene-based π-conjugated polymers grafted with dithiafulvenyl groups on their side chains were found to be efficient in dispersing single-walled carbon nanotubes in a selective and controllable way.
متن کاملDiameter-Selective Dispersion of Carbon Nanotubes via Polymers: A Competition between Adsorption and Bundling.
The mechanism of the selective dispersion of single-walled carbon nanotubes (CNTs) by polyfluorene polymers is studied in this paper. Using extensive molecular dynamics simulations, it is demonstrated that diameter selectivity is the result of a competition between bundling of CNTs and adsorption of polymers on CNT surfaces. The preference for certain diameters corresponds to local minima of th...
متن کامل